Structure of Aerugite (Ni_{8.5}As₃O₁₆) and Interrelated Arsenate and Germanate Structural Series

BY MICHAEL E. FLEET

Department of Geology, University of Western Ontario, London, Ontario N6A 5B7, Canada

AND JACQUES BARBIER

Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada (Received 6 September 1988; accepted 23 November 1988)

Abstract

Aerugite (Ni_{8.5}As₃O₁₆), $M_r = 979 \cdot 8$, trigonal, $R\bar{3}m$, $r = 9.8105 (7) \text{ Å}, \quad \alpha = 35.312 (1)^{\circ}, \quad [a = 5.9511 (5),$ c = 27.5676 (20) Å, hexagonal cell], V = 281.9 Å³, $Z = 1, D_x = 5.772 \text{ g cm}^{-3}, \lambda (\text{Mo } K\alpha) = 0.71069 \text{ Å}, \mu$ $= 231 \cdot 25$ cm⁻¹, F(000) = 465, room temperature, final R = 0.023 for 925 unique reflections. The space group of $(Ni,Mg)_{10}Ge_{3}O_{16}$ is revised to $R\bar{3}m$ (final R =0.013). Aerugite is isomorphous with $Mg_{8.5}As_3O_{16}$ and has a close-packed layer structure ([001]_{hex} stacking direction), with tetrahedral As5+ and octahedral As5+ and Ni²⁺ cations. Charge balance of the structure is achieved by partial occupancy (5/6) of the Ni(1) position in layers of mixed $As(1)O_6$ and $Ni(1)O_6$ octahedra. Partial occupancy is associated with local positional disorder about Ni(1) sites but there is no indication of vacancy ordering. The aerugite structure is closely related to the (Ni,Mg)₁₀Ge₃O₁₆ structure, and cation charge per single close-packed layer is conserved between them. The aerugite structure may be analyzed in terms of a regular intergrowth of olivine-type and rock-salt-type layers parallel to (011)_{th}. This suggests the possibility of new structural series of the type $M_{3n+5.5}As_{2n+1}O_{8(n+1)}$ (M = Ni, Co, Mg), analogous to that reported earlier for germanate compounds, with aerugite and xanthiosite (Ni₃As₂O₈) corresponding to the end members n = 1 and $n = \infty$, respectively, for the Ni series.

Introduction

Recent studies (Barbier, 1987a,b; Fleet & Barbier, 1988) have determined the structure of the compound $(Ni_xMg_{1-x})_{10}Ge_3O_{16}$, with $x \approx 0.4-0.5$, and have shown that it belongs to a new structural family M_{4n+6} Ge_{2n+1}O_{8(n+1)} built from the regular intergrowth of n olivine layers with a single rock-salt-like layer parallel to (011)_{rh}. The O atoms in (Ni,Mg)₁₀Ge₃O₁₆ form a cubic close-packed array, and its structure may also be viewed as an intergrowth of alternate {111} triple layers of spinel-like structure with a single layer of rock-salt-like structure stacked in the direction of

0108-7681/89/030201-05\$03.00

[001]_{hex}. Fleet & Barbier (1988) reported the space group of $(Ni,Mg)_{10}Ge_{3}O_{16}$ to be $R\overline{3}$. Further consideration (this study) showed that both cobalt and magnesium arsenate [Co₈As₃O₁₆, Krishnamachari & Calvo (1970a); Mg_{8.5}As₃O₁₆, Bless & Kostiner (1973)] have analogous crystal structures to (Ni,Mg)₁₀Ge₃O₁₆, but with space group $R\overline{3}m$. We realized at this time that $R\bar{3}m$ was a possible space group for $(Ni,Mg)_{10}Ge_{3}O_{16}$ and that the reported structure closely corresponded to R3m symmetry. Subsequently, R. E. Marsh and Y. Le Page (personal communications, 1988) both drew our attention to this problem, Le Page noting that $R\overline{3}m$ symmetry was favoured by the program MISSYM (Le Page, 1987). We therefore report the revised structure in the higher space group.

From the work of Taylor & Heyding (1958) and Krishnamachari & Calvo (1970a), the mineral aerugite (Davis, Hey & Kingsbury, 1965) is isomorphous with the cobalt and magnesium arsenates, and the similar crystal chemistries of Mg2+ and Ni2+ in oxide compounds suggest that aerugite has the formula Ni_{8.5}- As_3O_{16} . This is confirmed in the present study of the structure of synthetic aerugite. Finally, the arsenate and germanate structures are compared leading to the recognition of new structural series for the divalent metal arsenates.

Experimental

Ni_{8.5}As₃O₁₆

Aerugite from South Terras mine, Cornwall (Davis et al., 1965) was too fine-grained for single-crystal X-ray study. Synthetic aerugite crystals were grown from a commercial amorphous nickel arsenate compound (with an Ni:As atomic ratio of 4:5 as determined by neutron activation analysis) heated in air in a platinum dish at about 1470 K for 1 h. Initial melting and evaporation of arsenic oxide resulted in a mixture of a yellow microcrystalline phase and larger dark-green crystals of aerugite which were tabular with {001}_{hex} dominant. The yellow phase has been identified by powder X-ray diffraction as a tetragonal form

© 1989 International Union of Crystallography

of Ni₃As₂O₈, *i.e.*, a polymorph of the mineral xanthiosite. It is probably isostructural with Mg₃As₂O₈ (Krishnamachari & Calvo, 1973) and with the tetragonal form of Co₃As₂O₈ (Gopal, Rutherford & Robertson, 1980). The X-ray powder pattern of synthetic aerugite closely corresponds to that of natural aerugite (Davis et al., 1965) and the unit-cell parameters (a = 5.952, c = 27.561 Å, c/a = 4.631, obtained with a Guinier-Hagg camera and Cu $K\alpha_1$ X-radiation) were similar to those of $Mg_{8.5}As_3O_{16}$. Single crystals were removed from the dish by soaking in distilled water for 24 h at room temperature. The crystal used for data collection was tabular, bound by $\{001\}_{hex}$ and rhombohedral faces, with approximate dimensions $0.13 \times 0.13 \times 0.15$ mm and a calculated volume of 0.25×10^{-2} mm³. X-ray precession photographs confirmed that the Laue class was $\overline{3}m$. Enraf-Nonius CAD-4F diffractometer, graphite-monochromatized Mo Ka X-radiation. 20 reflections in 2θ range 51.8- 62.8° for cell parameters. Reflection data collected by θ -2 θ scan; scan angle (2 θ) = 2.4°, with dispersion correction. 4709 hkl, hkl reflections (hexagonal indices) allowed by space group $R\overline{3}m$ out to $2\theta = 90^{\circ}$ measured; $-11 \le h \le 11$, $-11 \le k \le 11$, $0 \le l \le 54$. Standard reflections 220, $\overline{2}40$, $0\overline{2}8$; $R_{int} = 0.01$, no significant variation in intensity. Background, Lorentz, polarization and absorption corrections applied; transmission factors (by Gaussian integration with a $12 \times 12 \times 12$ grid) varied from 0.052 for $\overline{1}11$ to 0.161 for 2117. 925 unique reflections. 297 reflections considered unobserved on the basis of $I < 3\sigma(I)$ $\{\sigma(I) = [I_m + 0.002^2(I_m - B)^2 + 0.005^2(I - I_m)^2]^{1/2}; I_m,$ measured intensity and B, background) and procedure below.

Structure refinement proceeded in space group $R\overline{3}m$ (Bless & Kostiner, 1973) using atomic positions equivalent to those in the structure of (Ni,Mg)₁₀Ge₃O₁₆ (Table 1) with M(1) vacant, $M(2) \equiv Ni(1)$ with 5/6 occupancy, and $M(3) \equiv Ni(2)$. $\sum w(\Delta F)^2$ minimized, $w = 1/\sigma^2$; weak reflections $[|F_o| < (|F_o|_{max}/20)]$ were given a low weight ($\sigma = 1000$). Refinement using all reflections out to $2\theta = 90^{\circ}$ and 35 variable parameters converged to R = 0.023, wR = 0.026, S = 0.233, $(\Delta/\sigma)_{\rm max} = 5 \times 10^{-8}, \ \rho = -4 \cdot 1 \ {\rm e} \ {\rm \AA}^{-3}$ [near As(2)] to $5.7 \text{ e} \text{ Å}^{-3}$ [near O(2)]. The isotropic extinction parameter for type I extinction (g; Coppens & Hamilton, 1970) is $1.20(2) \times 10^{-4}$. Scattering factors for neutral atomic species and f', f'' taken, respectively, from Tables 2.2B and 2.3.1 of International Tables for X-ray Crystallography (1974). Computations carried out with DATAP77 and LINEX77 (State University of New York at Buffalo).

$(Ni,Mg)_{10}Ge_{3}O_{16}$

The structure of $(Ni,Mg)_{10}Ge_3O_{16}$ was refined in space group $R\bar{3}m$, with the following new values (cf.

Table 1. Positional and equivalent isotropic thermal parameters $(Å^2)$ for aerugite $(Ni_{8.5}As_3O_{16})$ and $(Ni,Mg)_{10}Ge_3O_{16}$ in $R\bar{3}m$ (rhombohedral setting)

$\boldsymbol{B}_{eq} = \frac{2}{3} \sum_{i} \sum_{j} \beta_{ij} \boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}.$									
Equi-									
point	x	у	z	B_{eq}					
(Ni8.5As3	D ₁₆)								
3(e)	0.0	0.5	0.5	0-456 (9)					
6(h)	0.75281 (9)	31 (9) 0·25478 (5) y		0.316 (6)					
1(a)	0.0	0.0	0.0	0.236 (9)					
2(c)	0-19203 (2)	x	x	0.210 (8)					
2(c)	0-12956 (14)	x	x	0-362 (44)					
2(c)	0.37881 (18)	x	x	0.682 (51)					
6(<i>h</i>)	0.67168 (46)	0.10604 (25)	у	0.546 (30)					
6(<i>h</i>)	0.10195 (48)	0-63450 (25)	0-63450 (25) y						
$(Ni,Mg)_{10}Ge_{3}O_{16}$									
1(b)	0.5	0.5	0.5	0.312(13)					
3(e)	0.0	0.5	0.5	0.257 (5)					
6(h)	0.75735 (6)	0.24897 (3)	r	0.293 (4)					
1(a)	0.0	0.0	0.0	0.208 (5)					
2(c)	0.18915(1)	x	x	0.222 (3)					
2(<i>c</i>)	0-12717 (6)	x	x	0.416 (23)					
2(<i>c</i>)	0-37637 (6)	x	x	0.382 (23)					
6(h)	0.65943 (20)	0-11284 (10)	у	0-397 (12)					
6(<i>h</i>)	0.12209 (19)	0-62598 (10)	у	0.389 (10)					
	Equi- point (Ni ₈₋₅ As ₃ (6(h) 1(a) 2(c) 2(c) 2(c) 6(h) 0Ge ₃ O ₁₆ (h) 3(e) 6(h) 1(a) 2(c) 2(c) 2(c) 2(c) 2(c) 2(c) 2(c) 2(c	$B_{eq} = \frac{3}{3} \cdot \frac{B_{eq}}{2} = \frac{3}{3} \cdot \frac{B_{eq}}{2} = \frac{3}{3} \cdot \frac{B_{eq}}{2} = \frac{1}{3} \cdot $	$B_{eq} = \frac{2}{3} 2_4 2_4 \beta_{Ij} a_{Ii} a_{Ii}.$ Equipoint x y $(Ni_{B,5} A_{53} O_{16})$ $3(e) 0.0 0.5$ $6(h) 0.75281 (9) 0.25478 (5)$ $1(a) 0.0 0.0$ $2(c) 0.12936 (14) x$ $2(c) 0.12936 (14) x$ $2(c) 0.37881 (18) x$ $6(h) 0.67168 (46) 0.10604 (25)$ $6(h) 0.67168 (46) 0.63450 (25)$ gGe_3O_{16} $1(b) 0.5 0.5$ $3(e) 0.0 0.5$ $6(h) 0.75735 (6) 0.24897 (3)$ $1(a) 0.0 0.0$ $2(c) 0.12915 (1) x$ $2(c) 0.12717 (6) x$ $2(c) 0.37637 (6) x$ $6(h) 0.65943 (20) 0.11284 (10)$ $6(h) 0.12209 (19) 0.62598 (10)$	$B_{eq} = \frac{2}{3} \sum_{i} \sum_{j} B_{ij} B_{i} \cdot B_{j} \cdot $					

Table 2. Selected interatomic distances (Å) and bond angles (°) in aerugite (Ni_{8.5}As₃O₁₆)

$\begin{array}{ll} Ni(1)-O(2) & 2\cdot 127 \ (3) \\ Ni(2)-O(4^{l}) & 2\cdot 035 \ (2) \\ Ni(2)-O(1) & 2\cdot 079 \ (2) \\ As(1)-O(3) & 1\cdot 835 \ (2) \\ As(2)-O(4^{ll^{l}}) & 1\cdot 678 \ (2) \end{array}$	$\begin{array}{lll} Ni(1)-O(3^i) & 2\cdot 129 \ (2) \\ Ni(2)-O(2) & 2\cdot 066 \ (3) \\ Ni(2)-O(3^{i_1}) & 2\cdot 105 \ (2) \\ As(2)-O(1) & 1\cdot 722 \ (4) \end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccc} O(2)-Ni(1)-O(3^{1}) & 90.72 \ (8) \\ O(3^{3})-Ni(1)-O(3^{1}) & 104\cdot51 \ (12) \\ O(3)-Ni(1)-O(3^{3}) & 75.49 \ (12) \\ O(4^{4})-Ni(2)-O(2) & 87\cdot17 \ (9) \\ O(4^{4})-Ni(2)-O(3^{1}) & 166\cdot61 \ (9) \\ O(2)-Ni(2)-O(1) & 179\cdot87 \ (14) \\ O(1)-Ni(2)-O(3^{0}) & 88\cdot54 \ (11) \\ O(3)-As(1)-O(3^{1}) & 90.46 \ (11) \\ O(3)-As(2)-O(4^{4}) & 111\cdot95 \ (9) \\ \end{array}$

Symmetry code: (i) z, x, y; (ii) -y, -x, -z; (iii) -x, -y, -z; (iv) y, z, x; (v) -y, -z, -x.

Fleet & Barbier, 1988): 940 unique reflections, 300 considered unobserved; 40 variable parameters converged to R = 0.013, wR = 0.008, S = 0.058, $(\Delta/\sigma)_{max} = 3 \times 10^{-6}$, $\rho = -0.36$ to $0.24 \text{ e} \text{ Å}^{-3}$; g = 0.174 (1) × 10⁻⁴. Statistical tests and the satisfactory refinement both confirm the space group $R\bar{3}m$.

Discussion

Positional parameters are given in Table 1, and selected interatomic distances and bond angles for aerugite are given in Table 2.* A drawing of the aerugite structure projected on $(011)_{rh}$ is shown in Fig. 1; a similar projection of the $(Ni,Mg)_{10}Ge_3O_{16}$ structure is shown in

^{*} Tables of anisotropic thermal parameters and structure factors for aerugite and $(Ni,Mg)_{10}Ge_3O_{16}$ have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51658 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1 of Fleet & Barbier (1988) and in Fig. 3(a) of Table 3. Mean bond distances (Å) in nickel, magnesium Barbier (1987b).

Aerugite (Ni_{8.5}As₃O₁₆)

The O atoms in aerugite form a cubic close-packed array stacked in the direction of [001]_{hex} ([111]_{rh}) and the As and Ni atoms combine with them to form layers of polyhedra parallel to (001)_{hex}. Three-layer structural units [comprised of two layers of Ni(2)O₆ octahedra enclosing a layer of As(2)O₄ tetrahedra] are interspersed by a single layer of rock-salt-like structure [comprised of mixed $As(1)O_6$ and $Ni(1)O_6$ octahedra; R in Fig. 1]. Aerugite $(Ni_{8.5}As_3O_{16})$ is clearly isomorphous with Mg_{8.5}As₃O₁₆ (Bless & Kostiner, 1973). Arsenic is in the 5+ oxidation state as confirmed by the average octahedral and tetrahedral As-O bond lengths (1.835 and 1.695 Å, respectively; Table 2) which are in very good agreement with values predicted from the ionic radii (Shannon, 1976). The partial occupancy of the Ni positions required to charge balance the arsenate

Fig. 1. The structure of aerugite (Ni_{8.5}As₃O₁₆), projected on (011)_{rh}. Large and small circles represent As and Ni atoms, respectively. O atoms occupy the corners of the polyhedra. Open, filled and dotted circles are at heights 0, 50, and ±25, respectively. Atom heights are expressed in 1/100th of the repeat distance in the projection direction (5.95 Å). The rock-salt layers (R) parallel to $(111)_{rh}$ are cation deficient: their Ni sites [Ni(1)] have a partial occupancy of 5/6. Other octahedral layers parallel to $(111)_{rh}$ accommodate Ni(2) atoms. The (011)_{rh} layers denoted 'OL' are cation-deficient olivine-type layers also found in other arsenate structures (cf. Figs. 2 and 3). The aerugite structure is closely related to the (Ni,Mg)10Ge3O16 structure [cf. Fig. 1 of Fleet & Barbier (1988) and Fig. 3a of Barbier (1987b)].

and cobalt arsenates

Ni ₈₋₅ As ₃ O ₁₆		Mg ₈₋₅ As ₃ O ₁₆ ^{<i>a</i>}		Co ₈ As ₃ O ₁₆ ^b		
Ni(1)—O Ni(2)—O	2∙09°	2·128 2·071	Mg(1)—O Mg(2)—O	2.158 2.088	Co(1)-O Co(2)-O	2.14 2.13
As(1) O As(2)–O	1-86° 1-74°	1-835 1-689		1.857 1.684		1∙84 1∙68

References: (a) Bless & Kostiner (1973); (b) Krishnamachari & Calvo (1970a); (c) ideal values, Shannon (1976).

group within the cubic close-packed oxygen array is limited to Ni(1). Krishnamachari & Calvo (1970a) suggest the analogous cobalt arsenate to be Cog- As_3O_{16} , charge-balanced by a small proportion of As^{3+} and with Co²⁺ distributed equally over both divalent metal positions. In view of the isomorphic nature of aerugite $(Ni_{8.5}As_3O_{16})$ and $Mg_{8.5}As_3O_{16}$ further study of the cobalt arsenate seems desirable.

Comparison of the bond lengths for (Ni,Mg)10-Ge₃O₁₆ (Fleet & Barbier, 1988) and aerugite (Tables 2 and 3) shows that the partial occupancy of the Ni(1)site results in an increase in mean Ni(1)-O bond length: M(2) - O = 2.095 vs Ni(1) - O = 2.128 Å; M(3)-O = 2.078 vs Ni(2)-O = 2.071 Å. A similar effect has been reported for Mg_{8.5}As₃O₁₆ (Bless & Kostiner, 1973).

Relation to (Ni,Mg)10Ge3O16

Comparison of the (011)_{rh} projections of aerugite and (Ni,Mg)₁₀Ge₃O₁₆ shows both structures to have similar rhombohedral unit cells based on cubic closepacking of O atoms with identical layer stackings in the $[111]_{\rm rh} = [001]_{\rm hex}$ direction. The only difference arises from the presence (in the aerugite structure) of both empty and partially occupied octahedral metal sites; these are naturally imposed by the different valence states of As⁵⁺ and Ge⁴⁺, leading to a metal/arsenic ratio of 8.5/3 in the arsenate and a metal/germanium ratio of 10/3 in the germanate. As a consequence, the aerugite structure contains (001)_{hex} layers built up of AsO₄ tetrahedra only, which, owing to the short As(2)-O tetrahedral bonds, result in a compression of the structure along the $[001]_{hex}$ direction: c = 27.5676 Å and c/a = 4.632 for Ni_{8.5}As₃O₁₆ whereas c =28.6135 Å and c/a = 4.862 for $(Ni,Mg)_{10}Ge_{3}O_{16}$. The presence of octahedral vacancies in these tetrahedral [As(2)O₄] layers precludes description of the aerugite structure in terms of {111} spinel slabs similar to those identified in the (Ni,Mg)₁₀Ge₃O₁₆ structure (Barbier, 1987a,b). However, it is interesting to note that a similar vacancy configuration exists in the structure of spinel-related orthovanadates such as Ni₃V₂O₈ and Mg₃V₂O₈ (Krishnamachari & Calvo, 1971).

As a result of the partial occupancy of the Ni(1) site in aerugite, the layers of mixed $A_{s}(1)O_{6}$ and $N_{i}(1)O_{6}$ octahedra (R in Fig. 1) correspond to cation-deficient rock-salt layers with $Ni_{2.5}AsO_4$ composition. The random distribution of Ni^{2+} cations within these layers is consistent with the overall rhombohedral symmetry of the aerugite structure, and no indication of vacancy ordering (leading to a lower symmetry cell) has been observed in either powder or single-crystal X-ray diffraction experiments.

As already noted by Bless & Kostiner (1973), the cation distribution in the aerugite structure results in the formation of neutrally charged double close-packed layers with compositions Ni_{5.5}AsO₈ and Ni₃As₂O₈ (Fig. 1). Similar neutral layers in the (Ni,Mg)₁₀Ge₃O₁₆ structure have the stoichiometries (Ni,Mg)₆GeO₈ and (Ni,Mg)₄Ge₂O₈, respectively. It would seem that the same charge-balance scheme could be expected for the cobalt arsenate analogue, even though its structure (as determined by Krishnamachari & Calvo, 1970a) seems to be somewhat different. We also point out that the cation charge per single close-packed layer is the same in the aerugite and (Ni,Mg)₁₀Ge₃O₁₆ structures. For example, with reference to the aerugite structure (Fig. 1), the close-packed layers with tetrahedral As(2)cations have $(2 \times 5 + 1 \times 0) = 10 +$ units of charge per formula unit, which compares with $(2 \times 4 + 1 \times 2)$ = 10+ in (Ni,Mg)₁₀Ge₃O₁₆; and the close-packed layers with octahedral As(1) and Ni(1) cations (R in Fig. 1) have $(1 \times 5 + 3 \times 5/6 \times 2) = 10 +$ units of charge per formula unit which compares with $(1 \times 4 + 3 \times 2)$ $= 10 + in (Ni,Mg)_{10}Ge_{3}O_{16}$. Thus, conservation of layer charge may be a significant factor in the stability of these compounds.

Fig. 2. The structure of $Co_{6.92}As_{3.62}O_{16}$ projected on (010). Large and small circles represent As and Co atoms, respectively. O atoms occupy the corners of the polyhedra. Open, filled and dotted circles are at heights 0, 50, and ± 25 , respectively. Atom heights are expressed in units of b/100. The structure corresponds to an hexagonal stacking of (001) close-packed layers and is of the olivine type. Note, however, that some Co sites (at heights ± 25) and the As sites are partially occupied.

Arsenate and germanate structural series

The crystal structures of two cobalt arsenates, $Co_{6.95}As_{3.62}O_{16}$ (Krishnamachari & Calvo, 1974) and $Co_3As_2O_8$ [the analogue of xanthiosite, Ni₃As₂O₈; Krishnamachari & Calvo (1970*b*)], are depicted in equivalent projections (Figs. 2 and 3).

Like aerugite, both structures are based on approximate close-packings of O atoms. The Co_{9.65}As_{3.62}O₁₆ structure corresponds to a two-layer hexagonal stacking of close-packed (001) layers, and apart from the partial occupancies of some sites, it is isostructural with olivine. The Co₃As₂O₈ structure is also built-up of similar olivine-type layers, albeit with a mixed hexagonal-cubic four-layer stacking in the [010] direction. Moreover, in order to achieve a Co/As ratio of 3/2, one quarter of the octahedral sites are vacant in such a way that all layers are identical with the Co₃As₂O₈ composition. [Similar layers exist in the structures of sarcopside-type orthophosphates such as Ni₃P₂O₈ (Calvo & Faggiani, 1975)]. It is also noteworthy that this vacancy ordering in Co₃As₂O₈ avoids the face-sharing of tetrahedral and octahedral sites along the cubic close-packed oxygen layer (cf. Fig. 3).

Olivine-type layers are also present in the aerugite structure, parallel to $(011)_{rh}$ and denoted 'OL' in Fig. 1. As a result of the partial occupancy of the Ni(1) site within the rock-salt layers (R), the olivine-type layers in

Fig. 3. The structure of the xanthiosite analogue $Co_3As_2O_8$, projected on (100). Large and small circles represent As and Co atoms, respectively. O atoms occupy the corners of the polyhedra. For clarity only the cation heights have been indicated. The structure consists of a mixed hexagonal-cubic (h,c) stacking of similar (010) close-packed layers. All layers are of the olivine type with $\frac{1}{4}$ of the Co sites empty (thus avoiding face-sharing between octahedra and tetrahedra on the 'c' oxygen layers). Note that the Co atoms at height 0 are displaced from the centres of their octahedra.

aerugite are nickel-deficient with a stoichiometry of Ni_{3.67}As₂O₈. Charge balance occurs by alternation with cation-deficient Ni_{4.83}AsO₈ octahedral layers. An analogous description of the (Ni,Mg)10Ge3O16 structure in terms of (Ni,Mg)₄Ge₂O₈ olivine layers and (Ni,Mg)₆GeO₈ rock-salt layers (Barbier, 1987a) led to the recognition of a new structural family of germanate compounds, $M_{4n+6}Ge_{2n+1}O_{8(n+1)}$ (M = Ni + Mg), of which the members n = 1 (M_{10} Ge₃O₁₆), n = 2 (M_{14} - Ge_5O_{24}) and $n = \infty$ (M_2GeO_4 olivine) have been identified as stable phases (Barbier, 1987b). The structural relationship between aerugite (Ni_{8.5}As₃O₁₆ and its Co analogue), xanthiosite (Ni₃As₂O₈ and its Co analogue), and the olivine-like phase Co_{6.95}As_{3.62}O₁₆ and its possible but as yet unreported Ni analogue, suggest that the nickel and cobalt arsenates (and perhaps the magnesium arsenates) may form a structural series similar to the germanate series, with aerugite and xanthiosite corresponding to the end members n = 1 and $n = \infty$, respectively. Indeed, work presently in progress indicates the existence of yet another new nickel arsenate phase with a composition intermediate between those of aerugite and xanthiosite and with unit-cell parameters corresponding to a six-layer closepacked structure, possibly similar to that of the n = 2member of the germanate series, M_{14} Ge₅O₂₄ (cf. Barbier, 1987b).

We thank Y. Le Page and R. E. Marsh for helpful comments, and F. J. Wicks and the Royal Ontario

Museum for loan of a sample of natural aerugite. This study was supported by Natural Sciences and Engineering Research Council of Canada operating grants to MEF and JB.

References

- BARBIER, J. (1987a). J. Solid State Chem. 68, 52-60.
- BARBIER, J. (1987b). Acta Cryst. B43, 422-429.
- BLESS, P. W. & KOSTINER, E. (1973). J. Solid State Chem. 6, 80-85.
- CALVO, C. & FAGGIANI, R. (1975). Can. J. Chem. 53, 1516-1520.
- COPPENS, P. & HAMILTON, W. C. (1970). Acta Cryst. A 26, 71-83.
- DAVIS, R. J., HEY, M. H. & KINGSBURY, A. W. G. (1965). *Mineral.* Mag. 35, 72–83.
- FLEET, M. E. & BARBIER, J. (1988). Acta Cryst. C44, 232-234.
- GOPAL, R., RUTHERFORD, J. S. & ROBERTSON, B. E. (1980). J. Solid State Chem. 32, 29–40.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KRISHNAMACHARI, N. & CALVO, C. (1970a). Can. J. Chem. 48, 3124–3131.
- KRISHNAMACHARI, N. & CALVO, C. (1970b). Can. J. Chem. 48, 881-889.
- KRISHNAMACHARI, N. & CALVO, C. (1971). Can. J. Chem. 49, 1629–1637.
- KRISHNAMACHARI, N. & CALVO, C. (1973). Acta Cryst. B29, 2611–2613.
- KRISHNAMACHARI, N. & CALVO, C. (1974). Can. J. Chem. 52, 46-50.
- LE PAGE, Y. (1987). J. Appl. Cryst. 20, 264-269.
- SHANNON, R. D. (1976). Acta Cryst. A32, 751-767.
- TAYLOR, J. B. & HEYDING, R. D. (1958). Can. J. Chem. 36, 597–606.

Acta Cryst. (1989). B45, 205-212

A Structural Analysis of Barium Magnesium Hollandites

By Robert W. Cheary and Roseanne Squadrito

School of Physical Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales, Australia 2007

(Received 6 October 1988; accepted 25 November 1988)

Abstract

The composition range, lattice parameters and ordering of the Ba ions in the monoclinic hollandite system $Ba_x(Mg_xTi_{8-x})O_{16}$ have been investigated using X-ray powder diffraction data. Rietveld refinement of highresolution neutron powder diffraction data has also been carried out on the end members $Ba_{1.14}(Mg_{1.14} Ti_{6.86})O_{16}$ and $Ba_{1.33}(Mg_{1.33}Ti_{6.67})O_{16}$. The increasing monoclinic distortion in these compounds with increasing Ba concentration arises from a change in the shape of the b-axis tunnels. No significant deformation of the tunnel walls occurs and the cell volume remains constant. The distortion is stabilized in the x = 1.33 hollandite by the Mg ions preferentially occupying one particular type of O octahedra. Off-centring of the octahedral cations within the O octahedra appears to reduce the extent of three-dimensional ordering in Ba hollandites. This probably arises because the electrostatic shielding between adjacent tunnels is increased when large dipole moments are set up by off-centre cations in the tunnel walls. Reasonable agreement is obtained between the observed and calculated positons of the X-ray superlattice lines in $Ba_x(Mg_xTi_{8-x})O_{16}$ for $x \le 1.23$. In the vicinity of x = 1.33 the observed 2θ positions differ significantly from the values calculated

0108-7681/89/030205-08\$03.00

© 1989 International Union of Crystallography